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Lyme disease is the most prevalent vector-borne disease in the temperate

Northern Hemisphere. The abundance of infected nymphal ticks is commonly

used as a Lyme disease risk indicator. Temperature can influence the dynamics

of disease by shaping the activity and development of ticks and, hence,

altering the contact pattern and pathogen transmission between ticks and

their host animals. A mechanistic, agent-based model was developed to

study the temperature-driven seasonality of Ixodes ricinus ticks and trans-

mission of Borrelia burgdorferi sensu lato across mainland Scotland. Based on

12-year averaged temperature surfaces, our model predicted that Lyme disease

risk currently peaks in autumn, approximately six weeks after the temperature

peak. The risk was predicted to decrease with increasing altitude. Increases in

temperature were predicted to prolong the duration of the tick questing season

and expand the risk area to higher altitudinal and latitudinal regions. These

predicted impacts on tick population ecology may be expected to lead to

greater tick–host contacts under climate warming and, hence, greater risks

of pathogen transmission. The model is useful in improving understanding

of the spatial determinants and system mechanisms of Lyme disease pathogen

transmission and its sensitivity to temperature changes.
1. Introduction
Lyme disease (or Lyme borreliosis) is the most prevalent vector-borne disease in

temperate regions of the Northern Hemisphere [1]. In the UK, the annual

number of confirmed Lyme disease cases is over 1000 and still increasing in

some areas each year [2]. The causative agents of Lyme disease belong to a species

complex of spirochaete bacteria named Borrelia burgdorferi sensu lato (s.l.), which are

transmitted principally by the tick Ixodes ricinus (castor bean, deer or sheep tick).

In Scotland, B. afzelii (associated with rodents) is the most abundant genospecies,

followed by B. garinii (associated with birds) and B. burgdorferi sensu stricto (s.s.)

(associated with both rodents and birds) [3]. As no vaccine is available, the preven-

tion of Lyme disease relies heavily on improving understanding of the mechanisms

of disease transmission and integrating multi-disciplinary knowledge and data to

predict the patterns of disease risk in a changing environment.

The risk of Lyme disease is strongly related to the density of active infected ticks,

which can be influenced by a wide range of biophysical factors related to host com-

munities, climate and landscape (see recent reviews [4–9]). Temperature, in

particular, has gained much attention in eco-epidemiological studies of Lyme dis-

ease, in line with increasing concern about the effects of climate warming over the

last few decades. Temperature affects the abundance of infected ticks in two main

ways. First, it directly affects the behaviour (e.g. activity and diapause), interstadial

development rate, fertility and survival of ticks [10,11]. Second, it influences the
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population and habitat suitability of host species. In addition, a

warmer climate at higher altitudes may result in an increase

in the population of important tick hosts such as roe deer,

Capreolus capreolus [12]. Population dynamics of rodents (the

transmission host) may also be influenced by temperature, as

climate change shifts local faunal abundance and diversity [13].

Mechanistic models, that explicitly represent the key popu-

lation groups and processes underpinning their interactions,

are capable of providing unique insights in support of

health-related decision-making [14]. They have increasingly

been applied to explain disease transmission system dynamics,

understand observed disease patterns, test scenarios for poten-

tial future risk patterns and propose data and methodological

improvements [15]. Existing mechanistic models for studying

the effects of temperature on Lyme disease risk are increasing

in number (e.g. [16–20]). However, existing models do not

incorporate spatial heterogeneity or focus on issues related

only to the dynamics of vector populations, ignoring key com-

ponents, such as host/pathogen distribution and habitat

suitability, which in reality are distributed unevenly and can

change rapidly over time. To bridge these gaps, we developed

a mechanistic model to investigate the spatio-temporal

dynamics of tick-borne diseases by integrating a number of

temperature-dependent functions for the temporal dynamics

of tick populations into a recently developed spatial model

for Lyme disease risk. The model considers the heterogeneity

in tick population ecology, host movements and pathogen

transmission across the landscape [21,22]. The model was

developed for Lyme disease risk assessment in mainland

Scotland where the potential for disease exposure is high due

to substantial public participation in nature-based activities.

The principal objective of this study was to use the outputs of

the mechanistic model for the spatio-temporal pattern of infected

tick abundance as a biophysical risk indicator (or ‘hazard’) of

Lyme disease. The model was designed to take account of cur-

rent scientific understanding of the system mechanisms so that

it can serve as an explanatory tool for further research and edu-

cational purposes. A secondary objective was to predict the

disease risk pattern and its seasonality for mainland Scotland.

We did not attempt to make precise annual predictions, nor pre-

dictions of the distributional spread of the pathogen, but rather

focus on the long-term (i.e. decadal) average approximation of

the seasonality, which is appropriate for application to scenarios

of long-term environmental change. To gain greater insight into

the spatial determinants of disease risk pattern and its sensitivity

to temperature changes, two modelling experiments were con-

ducted: (i) an exploration of the relationships between the

predicted disease risk patterns and environmental factors of

local interest, i.e. annual average temperature (affects tick survi-

val, development and activity), elevation (modifies the

temperature, habitat distribution and deer movement) and

deer density (influences tick reproduction); and (ii) prediction

of changes in disease risk pattern under simple climate warming

scenarios (i.e. regional increases of temperature by 18C, 28C and

38C throughout the year). Finally, we assessed the data and

methodological barriers of adopting such a complex zoonotic

disease model for regional-level real-world applications.
2. Material and methods
A mechanistic, agent-based model was developed by integrating

recent developments in simulating the temperature-driven
temporal [16–20] and spatial [21,22] dynamics of I. ricinus popu-

lations and B. burgdorferi s.l. transmission in mainland Scotland.

Multi-sectoral data were used to prepare model inputs [23–30],

modify model functions [23] and evaluate the model outputs

[24] (see details and discussions in the electronic supplementary

material). The model was used to predict the spatio-temporal

pattern for the density of infected nymphs (DIN, as a Lyme dis-

ease risk indicator) based on 12-year (2000–2011) mean weekly

temperature surfaces. The model was then applied to a number

of simple temperature warming scenarios to explore the possible

consequences of climate change on the DIN pattern. Finally, we

further examined the spatio-temporal patterns of simulation

predictions by summarizing the predicted DIN changes accord-

ing to annual average temperature, elevation and deer density

parameters to assess how the effects of these parameters may

vary with a warming climate.
2.1. Model overview
The conceptual framework for the Lyme disease risk model is

presented in figure 1. It is programmed using Repast Simphony

(v. 2.2) [31] in which the environment is represented as a two-

dimensional, rectilinear grid with a cell size of 1 km2 and a

time step of one week. There are three interactive layers within

the model where cells represent the population distributions of

ticks and host animals and the configuration of the landscape.

The mechanisms for the spatio-temporal developments and

interactions of the model layers are represented as transition

rules, which are grouped into three sets concerning tick popu-

lation dynamics, pathogen transmission, and host population

dynamics and movement patterns, respectively. The framework

was designed to describe the general ecological processes of

Lyme disease but the present model was parametrized for main-

land Scotland. A summary of the model is provided in this

section and detailed descriptions of the layers, parameters and

transition rules are presented and discussed in the electronic sup-

plementary material (§S2, see all parameter values in table S2.1).
2.1.1. Tick population layer
Four life stages are modelled: ‘egg’, ‘larva’, ‘nymph’ and ‘adult’. In

each post-egg life stage, ticks could be in questing, feeding or inter-

stadial development phases. Total and infectious populations in all

stages are simulated for each cell. When encountering hosts, quest-

ing ticks attach for blood meals, then drop and develop into the

next life stages. Female adult ticks (assuming half of the emerged

adult ticks are females) also need blood meals to produce eggs

that hatch into larval ticks. Durations of feeding are assumed to

be less than one week for larvae, and one week for nymphs and

adults. We also assume that questing activity and interstadial

http://rsif.royalsocietypublishing.org/
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development are sensitive to temperature, while feeding success is

assumed to be dependent on the density of hosts [16–20].

2.1.2. Host population layer
Populations of three generalized host types are simulated for

each cell: (i) transmission hosts that are capable of transmitting

B. burgdorferi s.l. (e.g. rodents [32], birds [33] and lagomorphs

[34]), (ii) deer (e.g. roe deer and red deer) and (iii) livestock

(e.g. sheep and cattle). In the model, the overall number of trans-

mission hosts varies with season, but that of deer and livestock

is fixed. The spatial distributions of hosts can vary between time

steps due to animal weekly and seasonal movements (i.e. home-

ranging and dispersal), resulting in ticks being transported from

one place to another. Owing to limited data, only the generic

B. burgdorferi s.l. was considered in the model, not the individual

genospecies. As the density of common rodent species [35] is

much greater than that of birds [30] in Scotland, the transmission

host demography is assumed to be largely dependent on rodents.

Hence, the populations of bird and lagomorph are included in the

host layer, but their dynamics are not modelled explicitly. There-

fore, considering the scale (the whole of mainland Scotland) and

spatial resolution (1 km2), this model is more relevant for rodent-

specialized Borrelia genospecies such as B. afzelii and B. burgdorferi
s.s. than for the bird-specialized B. garinii. Moreover, the move-

ment of transmission hosts is assumed negligible for a cell size of

1 km2, as the home range sizes of rodents and birds are usually

around 0.1–0.2 ha, and the dispersal distances are less than 1 km

for rodents and at the continental or global level for birds

[36,37]. In the model, deer and livestock are assumed to be tick

reproduction hosts which provide a large quantity of blood

meals for tick development and reproduction but which do not

support systemic B. burgdorferi s.l. transmission [38–41]. Sheep

may support non-systemic pathogen transmission between co-

feeding ticks [42]. However, such a transmission route is not

included in the present model as there is debate on its significance

in the maintenance of B. burgdorferi s.l. [43,44]. The two reproduc-

tion host types (deer and livestock) use different land covers and

perform different movement patterns. Home range sizes of both

deer and sheep are assumed to change seasonally. The seasonal dis-

persal of deer (i.e. downhill migration during winter and uphill

migration during summer [45]) is also modelled explicitly. While

ticks in each post-egg life stage are assumed to be capable of feeding

on all host types, in the model larvae preferred transmission hosts

(rodents and birds), adults preferred reproduction hosts (deer and

sheep) and nymphs were assumed to be generalists.

2.1.3. Landscape layer
The landscape is represented by four cell states: woodland, grass-

land, heathland and non-vegetated/other areas. The model

assumes that ticks can inhabit grassland and heathland, but that

woodland is more suitable [5,12]. Mortality rates of ticks, densities

of hosts and movement patterns of hosts vary with the four land

cover types. Transmission hosts can inhabit all woodland, heath-

land and grassland. Deer are considered to inhabit mainly

woodland and heathland, and they can spend a proportion of

their time in grassland for grazing. Conversely, livestock are

assumed to be present mainly in grassland, but are also able to

graze in heathland and woodland. All hosts can enter non-

vegetated areas, but do not stay, hence, it is assumed that no

ticks drop off in such areas. Elevation is used to simulate the sea-

sonal uphill/downhill dispersal of deer and altitudinal changes

in their home range.

At each successive time step, these transition rules are applied

in sequence to update cell states simultaneously. Firstly, within

each cell, the infectious and total populations of questing ticks at

each life stage are updated by adding in the unfed ticks moulted

from a previous life stage and removing those that die in the
previous time step. At the same time, the infectious and total

populations of transmission hosts are updated according to the

seasonal carrying capacity and birth/mortality rates. Secondly,

hosts encounter questing ticks in the same cell and pathogen trans-

mission takes place. Finally, between-cell host movements are

considered, i.e. all nymphs and adults attached to out-moving ani-

mals are transported and dropped off at the end of the time step.

The transport of larvae, however, is considered negligible, as

their feeding duration is assumed to be less than one week

(around 3 days) and they are assumed to feed preferentially on

small transmission hosts with small home ranges which do not

move between cells.

2.2. Model inputs, outputs and initialization
2.2.1. Input
Multi-sectoral datasets were processed and integrated, including

empirical data on tick behaviour, B. burgdorferi s.l. infection and dis-

tribution [23,24], earth observations on land cover and habitat types

[25], long-term publically accessible meteorological data [26] and

host habitat suitability and distribution estimations based on

census data, literature-based qualitative information and model

predictions [27–30]. Data sources and preparation details are

presented in the electronic supplementary material (§S3).

2.2.2. Output
The model can output an infected/uninfected tick density sur-

face for all the different life stages (egg, larva, nymph and

adult) at difference phases (questing, feeding or interstadial

development). In this study, only the density of questing infected

nymphs (DIN) was output, as this is a widely used Lyme disease

risk indictor [4–9]. Nymphs are an order of magnitude more

common than adult ticks. Nymphs are also smaller than adult

ticks and less likely to be spotted, allowing them to complete

their blood meal and transmit Borrelia pathogens. Nymphs

have been shown to be the stage causing most Lyme disease

cases in people [46,47]. Furthermore, we focused on simulations

in woodlands, as field studies have shown that many more ticks

have been observed in forests than open habitats [48].

2.2.3. Initialization
All simulations were initialized with assumed initial densities of

2 � 105 and 5 � 104 per km2 for the total and infected questing

nymphs, respectively, in woodland. All results were recorded

after 2600 time steps (50 years) to ensure stabilized yearly cycles

had been reached.

2.3. Model evaluation
Two types of model evaluation were undertaken. The first qualitat-

ively compared the shape of the overall tick/pathogen seasonality

curve with empirical findings in Scotland or the UK from the litera-

ture. The second directly compared the spatial pattern of DIN

with field observations based on: (i) species distribution data

from the NBN (National Biodiversity Network) Gateway

(http://data.nbn.org.uk/) to obtain a general sense of the degree

of overall agreement and detect any under- or non-detected

patterns and (ii) the field study on the infection prevalence in

nymphs (NIP) [24] to check the model’s predictive power at

24 forest sites in mainland Scotland.

2.4. Model simulation
The main objective of the simulation exercise was to predict the

possible long-term disease risk pattern and its seasonality for

mainland Scotland, as well as possible changes under climate

warming scenarios. To gain an overview of disease risk pattern

and seasonality, weekly surfaces of infected nymph density

http://data.nbn.org.uk/
http://data.nbn.org.uk/
http://rsif.royalsocietypublishing.org/
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(a proxy of Lyme disease risk) were produced for mainland

Scotland using a set of 12-year (2000–2011) average weekly temp-

erature surfaces. Predicted disease risk pattern and its seasonality

were compared between administrative regions. Then, the poten-

tial effects of climate warming scenarios were tested by applying

increases of 18C, 28C and 38C to the 12-year average temperature

surfaces. Finally, by analysing the predicted DIN, we investigated

the effects of some selected cell-level variables on disease risk,

including: (i) annual average temperature (influences tick survival,

development and activity); (ii) elevation (modifies the tempera-

ture, habitat distribution and deer movement) and (iii) deer

density (affects tick reproduction). Temperature was selected due

to climate change concerns [2,7,49], while deer densities were

selected as these can be managed as part of disease risk controlling

strategies [22,50]. Elevation was hypothesized to be able to capture

the intricacies of temperature, hosts and habitat better than the

other two variables [51]. We first checked that the three variables

were only weakly associated with one another (Spearman’s corre-

lation coefficients were 20.31 between (i) and (ii), 0.39 between

(ii) and (iii), and 20.18 between (i) and (iii), and all significant at

the 0.05 level), before summarizing and plotting the predicted dis-

ease risk patterns against the three selected cell-level variables to

determine the efficacy in predicting the effects of climate warming.

To improve the visualization of plots, we reduced the size of the

predicted DIN data by averaging the cell-level predictions for

each interval of 1(m) for elevation, 0.1(8C) for temperature and

0.1 (heads/km2) for deer density.
3. Results
3.1. Model performance
3.1.1. Stabilized yearly cycles
Very similar stabilized yearly patterns in the DIN (less than

0.01% overall difference) were found after varying initial

values by +90%. Hence, the model outcomes seem to be

largely independent of differences in the initial tick densities.

Model predictions on the seasonal patterns of questing tick

populations and infection prevalence in different habitat

types are provided and compared with field evidence found

in the literature in the electronic supplementary material

(§S4.1). Stabilized yearly cycles of infectious tick populations

were achieved after 20–40 simulated years in all simulations

in woodland habitats. Tick populations in other habitats also

achieved stabilized cycles at lower levels, even though no

ticks were assumed to be present at initialization. The questing

larval and nymphal ticks had similar predicted seasonal

patterns with a peak in autumn (September–October). The

questing adult females had a relatively symmetrical predicted

pattern with peak values in summer (June–July). The nymphal

infection prevalence (NIP) and adult infection prevalence were

predicted to be relatively stable over the course of the year. To

assess the overall model performance, additional results on the

predicted transmission host populations and feeding tick

populations are also provided and discussed in the electronic

supplementary material.

3.1.2. Spatial dynamics
Predictions and discussions on the spatial patterns of tick and

NIP are provided in the electronic supplementary material

(§S4.2). In general, model performance in predicting the spatial

patterns was found to be satisfactory. Both the NBN records

and our model prediction suggest a wide distribution of ticks

across mainland Scotland. Moreover, the model achieved
‘correct’ predictions (if the field NIP values fell within the

range of simulated NIP values) in 22 forest sites (out of 24)

sampled the field study [24], with two underestimations in

Inverness (The Highlands). The lack of further field evidence

on DIN or NIP, as well as the lack of sampling-level conditions

of habitat and transmission host, prevented us from making

further comparisons.
3.1.3. Model sensitivity
Sensitivity analysis of all model parameters was undertaken

and compared with the results of previous model sensitivity

investigations from the original model, which we extended in

this study. These were found to be identical for all parameters

[21,22]. In summary, the model had a relatively high sensitivity

to tick mortality rate in the development phase from engorged

larvae into questing nymphs, systemic transmission efficien-

cies, the mortality rate of questing nymphs, basal mortality

rate of feeding larvae, transmission host feeding capacity for

larvae, transmission host finding probabilities for larvae and

nymphs, proportion of time-step spent in grassland for deer

and the density of transmission hosts.
3.2. Spatial pattern and seasonality of Lyme disease
risk in Scotland

The simulated spatial pattern of DIN in woodland is shown

in figure 2a. The relative DIN, or the peak DIN (in week 37)

as a percentage of the total DIN for all of Scotland, was

used to analyse the capability of annual average temperature,

elevation and deer density as simple indicators of high spatial

disease risk. The relative DIN was predicted to decrease with

increased elevation until it achieved a minimal value close to

zero after 500 m (visual inspection of figure 2b; in accordance

with empirical tick abundance data [51]). This was because,

in the model, high altitude regions have (i) a colder environ-

ment which restricts tick development and questing activities

(see [51]) and (ii) a large extent of non-woodland habitats

with a low-transmission host density (e.g. in montane and

inland rock), which was predicted to limit the chances

of pathogen transmission (cf. adjacent habitat effects on

pathogen transmission in Li et al. [21]). No consistent relation-

ship was found between the predicted relative DIN and

annual average temperature. However, where the annual

average temperature was between 68C and 108C, the DIN

was predicted to be lower in warmer places (visual inspection

of figure 2c). Such places were predicted to be located in the

central and southern parts of Scotland, and close to cities that

had fewer deer, hence, the tick population was maintained at

a low level. Otherwise (lower than 68C or greater than 108C),

annual temperature did not predict the difference in DIN

between cells, in which the effect of elevation was probably

more dominant. Increasing deer density was predicted to be

a good indicator of increasing disease risk in regions where

deer density was between 15 and 22 heads km22 (visual

inspection of figure 2d ). Alternatively, in places with deer den-

sity lower than 15 heads km22 or greater than 22 heads km22,

the relative DIN was predicted to vary considerably. Some

places had extremely high predicted DIN as they were suitable

habitats for both deer and transmission hosts in low and

medium altitude areas, while others had a predicted DIN of

nearly zero as these cells were in high altitude areas, which

are cooler and, therefore, have few ticks (after [51]) and fewer

http://rsif.royalsocietypublishing.org/
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transmission hosts. The model predicted a similar seasonality

of DIN for different Scottish regions, with some central and

southern regions (Oban, Dumfries, Hamilton, Perth and Ayr)

having a greater peak DIN value (figure 3a). A relatively

higher risk was predicted in autumn (weeks 37–40) than

in other seasons, lagging six weeks behind the peak weekly

temperature (week 31–33, see the electronic supplementary

material, figure S3.1f ).

3.3. Effects of climate warming on Lyme disease risk
Regional climate warming led to a predicted expansion of the

disease risk to higher altitudinal (figure 2b) and northern

regions such as Thurso and Golspie (figure 3). With a tempera-

ture increase of up to 38C, late winter and early spring were

simulated as being no longer free of disease risk (figure 3).

A warmer temperature was predicted to drive a greater

proportion of ticks to resume development (from diapause)

in spring and become more active over the winter. Thus, the

duration of the interstadial development phase was predicted

to be shortened and a greater tick population was predicted

to survive before entering the questing phase. In addition,

higher proportions of questing ticks were predicted to

become active earlier in the spring and remain active later

in the winter, resulting in a predicted prolonged duration of

the tick questing season. Both could contribute to a greater

frequency of tick–host contact and, hence, greater chance

for pathogen transmission. By assuming that temperatures
increased throughout the year, an upsurge in overall DIN

was predicted for all regions (the electronic supplementary

material, figure S1.1). Compared with the baseline pattern

(no temperature increase), temperature increases of 18C, 28C
and 38C resulted in the predicted peak value of DIN increasing

by 2, 7 and 11 times, respectively, and the extent of the pre-

dicted endemic area enlarging by 2.68%, 3.66% and 3.99%,

respectively. The greatest increases in endemic area extent

were predicted in Thainstone (3.96%, 6.24% and 7.80%),

Hamilton (6.68%, 6.85% and 6.85%) and Ayr (5.12%, 5.56%

and 5.60%). The overall effect of the temperature increases

was predicted to be weaker as elevation increased (figure 2b).

The predicted effect of climate warming scenarios was difficult

to distinguish when plotted against annual average tempera-

ture (figure 2c) and deer density (figure 2d ), because the two

variables were both unable to explain the baseline DIN pattern

(and the baseline DIN pattern was strongly correlated with the

DIN increase in the climate warming scenarios; a significant

Pearson’s correlation coefficient of 0.67 was found between

the predicted baseline DIN surface and the DIN surface

under the temperature þ18C scenario).
4. Discussion
A mechanistic model was developed for mainland Scotland to

predict the seasonal dynamics of the B. burgdorferi s.l. infected

http://rsif.royalsocietypublishing.org/
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nymphal I. ricinus ticks (or DIN), a biophysical risk indicator

of Lyme disease. The model integrates recent advances in

simulating the temperature-driven temporal [16–20] and

spatial [21,22] dynamics of disease risk, with multi-disciplinary

data based on the literature, empirical evidence, earth obser-

vation and model predictions. It was developed using an

agent-based approach that consisted of three generalized grid

layers (tick population, host population and landscape) and a

range of transition rules describing their interactions under

the influence of temperature. Considering the scale (the

whole of mainland Scotland) and spatial resolution (1 km2)

of this study, the model is more relevant for rodent-specialized

Borrelia genospecies such as B. afzelii and B. burgdorferi s.s. than

for the bird-specialized B. garinii or B. valaisiana because the

densities of rodents are far greater than birds. However,

recent empirical work in Scotland revealed that more that

40% of Borrelia is associated with birds, based on ticks collected

across 25 woodland sites [3]. Further models specifically focus-

ing on birds would be needed at a finer scale to gain a better

picture of the Borrelia transmission network.

It should be noted that the focus of this study was on long-

term risk and the predicted DIN pattern, i.e. the results were

based on 12-year (2000–2011) mean weekly temperature sur-

faces. Model predictions may have been different if different

temperature data had been used. Furthermore, we focused

on the relative values of DIN rather than on absolute values,

which are difficult to measure in the field due to the low

sampling efficiency of the flagging method which varies

widely depending on the vegetation type and due to variation

in questing tick behaviour related to weather conditions at the

time of sampling. The predicted risk patterns suggest a spatial

endemic foci in the Highlands (e.g. Oban and Inverness) and
Tayside (e.g. Perth) and temporal foci in August and Septem-

ber, which are similar to the pattern of human incidence

records [52,53]. In line with a recent field survey [51] in

which ticks were found to be strongly and negatively asso-

ciated with elevation on nine Scottish hills, our model

simulations predict a general decrease in DIN with increased

altitude in Scotland up to 500 m, above which the tick popu-

lations were close to zero. The ability of two other variables

(annual mean temperature and deer density) to act as a

proxy of disease risk was also analysed, but their explanatory

capability may only be satisfactory within certain intervals:

the DIN was predicted to be negatively associated with

annual temperature between 68C and 108C and positively

with deer density between 15 and 22 head km22.

Climate warming has been found to accelerate tick phenol-

ogy [49] and contribute to their geographical expansion [54].

Our model predicted similar overall conclusions from applying

scenarios of regional warming to the Lyme disease model.

First, the model predicted an overall rise in DIN across the

year with a peak in autumn. Climate warming was predicted

to contribute to a greater frequency of tick–host contact and,

therefore, greater chance for pathogen transmission. The conse-

quent predicted DIN increases were greater in low altitude

regions of Scotland where DIN had already been established

at a relatively high level. Second, the model predicted that cli-

mate warming could increase the extent of tick infested areas,

albeit marginally (less than 4% increase under all three climate

warming scenarios) as the distribution of ticks in mainland

Scotland is currently widespread [24]. Newly emerged DIN

cells were predicted to follow an altitudinal direction, as warm-

ing turned cold high altitude places into areas suitable for

maintaining an adequate population of questing ticks for a
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long enough period of the year. Most of these regions were

inhabited by deer, which help to sustain tick populations.

We have faced certain methodological and data challenges

when applying such a complex modelling approach to a large

area in the real world in line with those cited for complex socio-

ecosystem modelling by Filatova et al. [55]. The most critical

methodological challenge is how to represent the mechanisms

of B. burgdorferi s.l. transmission as this involves multiple

vector life stages, pathogen genospecies, host types and

movement patterns. The potentially important mechanisms

underpinning the interactions of system components are

numerous and complex, but there is insufficient field evidence

for their full quantification within our modelling framework.

Hence, we focused on advancing the treatment of temperature

effects within the model on tick population ecology and

host population seasonality, while a number of simplifying

assumptions were used for other parts of the system (e.g. gen-

eralizing pathogen species and host populations) to avoid

introducing too many uncertainties and computation burdens.

Data challenges were numerous, but, in general, data were

available for model input and evaluation. We integrated data

from diverse sources with different levels of detail, but it was

difficult to assess any biases in the model inputs, particularly

for transmission host distributions, which have been identified

as an important disease risk component in previous modelling

studies [3]. Detailed field data on the seasonality of both tick

and pathogen populations were not available across a wide

range of locations to undertake a thorough evaluation of

model output. It is also unfortunate that the model outputs

remain highly sensitive to the parameters for which the empiri-

cal data are the least reliable (e.g. systemic transmission

efficiencies, transmission host finding probabilities). This

data-poor condition has been noted as a common bottleneck

in the modelling of vectors and diseases [56]. Therefore, the

evaluation and parametrization experiments had to rely on

the literature and discontinuous data from multiple sources.

Further research is needed to fill these gaps either by improving

data collection or by advancing empirical model predictions.

This study focused on the biophysical component of the

disease transmission system. Disease risk (density of infected

nymphal ticks) was derived from those processes underlying

vector survival and pathogen circulation in wildlife popu-

lations and, hence, could be considered as the ‘hazard’.

However, a high ‘hazard’ does not always indicate a high
human infection rate. Social factors shaping the pattern of

land use for human outdoor activities, such as walking,

forest ranging, hunting, hiking, scouting, orienteering and

gardening [57–59], are likely to highly influence the disease

pattern [53,60]. Many of these outdoor activities are also

likely to be influenced by climate change. Such activities

expose humans to questing ticks and trigger pathogen spillover

to the human population. To date, combined hazard and

exposure risk models remain rare for vector-borne diseases,

and, to our knowledge, have not been developed for tick-

borne diseases. Future integration of exposure assessment

may benefit from recent advances in land-use models, such

as, agent-based socio-demographical models for estimating

the spatial pattern of human trips to forests [61]. Application

of such models to more plausible scenarios of future climate

and socio-economic change would also constitute a notable

extension of existing research. The simple temperature sensi-

tivity analysis undertaken in this study demonstrated the

importance of climate warming for disease risk, but more com-

plex scenarios (such as those from regional climate models,

where the temperature change varies both spatially and

temporally, and those from land-use models, which include

woodland expansion or contraction) are needed to better

understand the pathways of disease risk and the uncertainties

associated with these. Involving stakeholders in such future

models and scenario development exercises (e.g. as under-

taken in the CLIMSAVE project [62]) could significantly

advance strategies for adaptive Lyme disease management

under environmental change.
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