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Preface 
 
In this Deliverable the climate scenarios selected for IMPRESSIONS are presented. The selection 
procedure was described in Deliverable D2.1 ‘Evaluation of existing climate and socio-economic 
scenarios including a detailed description of the final selection’ and only briefly summarized below. 
The present deliverable reports on activities related to Task 2.3: Climate Scenarios: new simulations, 
downscaling and analysis. The new IMPRESSIONS socio-economic scenarios are described separately 
in Deliverable 2.2.  
 
The IMPRESSIONS climate scenarios were selected with a focus on high-end scenarios. The aim was 
primarily to portray the full range of climate sensitivity in the CMIP5 archive as far as possible and at 
the same time represent changes in global mean temperature from approximately 2°C to more than 
4°C. Further to this, an important second constraint was imposed; in order to benefit from higher 
resolution simulations for the local and regional case studies, only GCMs that have been dynamically 
downscaled in CORDEX1 were selected. The core set of GCM-RCMs used throughout the project is 
shown in Table 1. 
 

 
Table 1: Details of the core set of climate scenarios selected in IMPRESSIONS.  

Climate change Emission scenario GCM RCM GCM sensitivity 

High RCP8.5 HadGEM2-ES         RCA4 High 

High RCP8.5 CanESM2 CanRCM4 High 

High RCP8.5 IPSL-CM5A-MR WRF High 

Intermediate RCP8.5 GFDL-ESM2M RCA4 Low 

Intermediate RCP4.5 HadGEM2-ES RCA4 High 

Low                          RCP4.5         GFDL-ESM2M RCA4 Low 

Low RCP4.5 MPI-ESM-LR CCLM4 Low 

 

   

The full model names are given below. These include the acronyms of the institutions that made the 
GCM/RCM simulation (e.g. MOHC and SMHI) and the specific number of the selected GCM realization 
(r1i1p1). We include only EUR-44-simulations with a resolution of ~50 km. 
 
EUR-44-MOHC-HadGEM2-ES_r1i1p1_SMHI-RCA4_v1 -> HadGEM2-ES_RCA4    
EUR-44-CCCma-CanESM2_r1i1p1_CCCma-CanRCM4_r2 -> CanESM2_CanRCM4  
EUR-44-IPSL-IPSL-CM5A-MR_r1i1p1_IPSL_INERIS-WRF331F_v1 -> IPSL-CM5A-MR_WRF 
EUR-44-NOAA-GFDL-GFDL_ESM2M_r1i1p1_SMHI_RCA4_v1 -> GFDL-ESM2M_RCA4  
EUR-44-MOHC-HadGEM2-ES_r1i1p1_SMHI-RCA4_v1 -> HadGEM2-ES_RCA4 
EUR-44-NOAA-GFDL-GFDL_ESM2M_r1i1p1_SMHI_RCA4_v1 -> GFDL-ESM2M_RCA4  
EUR-44-MPI-M-MPI-ESM-LR_r1i1p1_CLMcom-CCLM4-8-17_v1 -> MPI-ESM-LR_CCLM4 
 
 
Data are stored on and can be downloaded from DMI’s server (http: 
http://ensemblesrt3.dmi.dk/data/IMPRESSIONS/) as well as on the IMPRESSIONS data portal 

                                                           
1 CORDEX is the Coordinated Regional Climate Downscaling Experiment, run by the World Climate Research 
Program. It aims to advance and coordinate the downscaling of global climate models to regional or local scales. 

http://ensemblesrt3.dmi.dk/data/IMPRESSIONS/
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(www.impressions-project.eu). Any queries about the data should be directed to Marianne Sloth 
Madsen (msm@dmi.dk) or Cathrine Fox Maule (cam@dmi.dk). 
 
 

Summary 
 
This deliverable documents the climate scenarios that have been prepared for use in IMPRESSIONS. 
The selected sub-set of GCM-RCM pairs has subsequently been bias-adjusted using quantile mapping 
for further use by the IMPRESSIONS impact analysts. The European and local case studies mainly rely 
on bias-adjusted RCM data, but bias-adjusted GCM data may be needed for regions where RCM data 
are not available. Here, we describe the bias-adjustment method in detail and illustrate how the final 
climate model data that have been provided are affected by the bias-adjustment.  
 
We describe the WATCH WFDEI data that have been used as the IMPRESSIONS baseline (1981-2010) 
and compare with the CRU data previously used for the CLIMSAVE baseline (1961-1990). The 
IMPRESSIONS baseline is warmer by about 1 degree and is generally a bit wetter.  
 
The climate change projections are illustrated in some detail in order to address model spread and 
hence to represent uncertainties in the projections; 30-year seasonal mean changes (2071-2100 vs. 
1981-2010) of temperature, precipitation, short-wave radiation, wind speed, and humidity (both 
specific and relative) are all shown for each selected GCM-RCM combination to illustrate model spread 
within the IMPRESSIONS model sub-set. Similar figures are provided for each of the selected GCMs, 
and we show that the climate change signal of temperature and precipitation to some extent is 
affected by the dynamical downscaling (by the RCM) as well as by the adopted bias-adjustment 
procedure.  
 
We also briefly present the climate indices (e.g. number of frost days and consecutive dry days) and 
climate analogues that have been calculated for Europe to illustrate the projected climate change. 
Some of these specific indices have been used in the IMPRESSIONS stakeholder workshops per case 
study to assist with explanations of the regional or local consequences of specific climate 
developments.  
 
 

1. Introduction 
 
As climate models are not perfect, model simulations for the historical period often show systematic 
deviations (biases) when compared with observations. This needs to be considered carefully when 
climate model data are used for impact assessments as the predicted impacts depend on the statistical 
properties of the climate input. In this Deliverable we describe how the data from the selected climate 
models were bias-adjusted to provide scenario data suitable for the impact assessments. As 
IMPRESSIONS includes a large number of impact models and spans local and regional as well as global 
scales, there is a large variety in the needs for scenario data. Table 2 summarizes the climate scenario 
data that have been provided within IMPRESSIONS.  
 
The scenarios are all based on the selected core set of climate models but were prepared using 
different bias-adjustment methods, different baseline periods and reference data sets as well as 
different temporal and horizontal resolution. The data for the CLIMSAVE Integrated Assessment 
Platform (IAP2) for Europe and Scotland needed to be consistent with assumptions made in a previous 
EU project, CLIMSAVE, and, hence, use the Delta Change approach for bias-adjustment and the CRU 
1961-1990 baseline data. For consistency within IMPRESSIONS, all scenarios except IAP2 use the 
WATCH WFDEI data for 1981-2010 to represent the baseline, and GCM as well as RCM data are bias-

mailto:msm@dmi.dk
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adjusted using the same quantile-quantile bias-adjustment method.  Note that the IAP2 is being 
replaced by the rIAM model within IMPRESSIONS, so all scenarios in the latter stages of the project 
will be based on a consistent approach. 
 
Table 2: Overview of the climate data sets provided in IMPRESSIONS. 
 

 Region Baseline Horizontal 
resolution 

Time 
resolution 

Methodology 

IAP2 - 
Europe 

Europe CRU 1961-1990 10’ 30-year time 
slices 

Delta change 

IAP2 - 
Scotland  

Scotland UKCP09 1961-
1990  

5km 30-year time 
slices 

Delta change 

WATCH 
WFDEI 
Baseline 
data  

Global WFDEI 1981-
2010 

0.5° Daily data Original data 

WATCH 
WFDEI 
Baseline 
data 

Europe WFDEI 1981-
2010 

10’ Daily data Regridding and 
lapse-rate 
correction2 

Bias-
adjusted 
RCM data 

Europe 
(EU) 

WFDEI 1981-
2010 

0.5° Daily data Bias-adjustment, 
Quantile 
mapping 

Bias-
adjusted 
RCM data 

Europe 
(EU10) 

WFDEI 1981-
2010 

10’ Daily data Regridding and 
lapse-rate 
correction 

rIAM  Europe WFDEI 1981-
2010 

10’ Decadal time 
slices 

Averaging and 
reformatting of 
bias-adjusted 
data (EU10) 

Bias-
adjusted 
GCM data 

-60-60°E, 
0-90°N  

WFDEI 1981-
2010 

0.5° Daily data Bias-adjustment, 
Quantile 
mapping 

 
In Section 2 we describe the bias-adjustment methods and the WATCH WFDEI reference data used for 
the 1981-2010 baseline period. In Section 3, the bias-adjusted RCM and GCM data are presented and 
Section 3.3 provides a comparison of the GCM vs. RCM climate change signal before and after the 
bias-adjustment. In Section 4, we illustrate the behavior of a number of selected climate indices. In 
the last section we briefly describe the progress in developing probabilistic scenarios.     
 
 

2. Bias-adjustment of climate scenario data 
 
Climate data from RCMs and GCMs generally suffer from biases in more or less all variables. The biases 
differ from model to model, variable to variable and with season; examples of the biases of one of the 
RCMs used in IMPRESSIONS are shown in Figure 2.1. Many models are able to reproduce temperatures 
within a few degrees, but biases of several tens of percent are not uncommon (e.g. precipitation over 
Europe). Biases of this level are often problematic when the climate model output is to be used as 
input in impact models such as hydrological models. Therefore a bias-adjustment is applied to the 

                                                           
2 This is described in Section 2.2. 
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climate model output to make it have the same statistical properties as observations during a specified 
calibration period. In IMPRESSIONS, this calibration period is taken to be 1981-2010.  
 
The most simple bias correction methods are ‘Delta Change’ methods in which the mean observed 
value is adjusted by applying a correction for the future that is derived from climate models. This 
method was used in the CLIMSAVE project and so was reproduced for the CLIMSAVE IAP2 model data 
for Europe and Scotland in IMPRESSIONS. As the IAP2 data include 30-year monthly mean data, the 
Delta Change method is a reasonable approach.  
 
However, as some of the impact models involved in IMPRESSIONS rely on climate data with daily 
resolution we have chosen to use quantile mapping for the main bias-adjustment; this method has 
been proven to perform well compared to other bias-adjustment methods (Räty et al., 2014). Bias-
adjustment requires an observational data set to bias adjust against and to this end we use the WATCH 
WFDEI which is a global data set based on re-analysis and with sub-daily resolution (Weedon et al 
2011, 2014). In Section 2.1 we describe the bias-adjustment methods and in Section 2.2 we describe 
the WATCH WFDEI climatology for 1981-2010 and compare it with the more well-known CRU 1961-
1990 climatology used in CLIMSAVE.  
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Figure 2.1: Bias of GFDL-RCA compared to WFDEI prior to bias correction for temperature (tas), 
precipitation (pr), short wave radiation (rsds), surface wind (sfcWind), specific humidity (huss) and 
relative humidity (hurs). Both annual (ANN) and seasonal (DJF, MAM, JJA, SON) means are shown, 
all values are averages over 1981-2010. 
 
 

2.1. Bias-adjustment methods 
 
The bias-adjustment methods used in IMPRESSIONS are described below; the Delta Change method 
is briefly described in Section 2.1.1 and the quantile mapping procedure is explained in more detail in 
Section 2.1.2. 
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2.1.1. Delta Change 
 

The first set of IMPRESSIONS scenario data (IAP2 for Europe and Scotland) were prepared using the 
same methods and baseline data as in the CLIMSAVE project. However, the GCM-RCMs selected for 
IMPRESSIONS were used and the scenarios were extended until 2100.  
 
In the Delta Change approach, the observed data is used as the baseline which is combined with the 
simulated mean change deduced from the climate model simulations to produce future climate 
scenarios. For temperature, the absolute change in temperature is added to the observed baseline 
temperature and for precipitation and solar radiation the relative changes are applied by 
multiplication. 
 
For the European IAP2, the changes in climate variables were calculated on the RCM grid (~50km) and 
remapped to the CRU 10’x10’ grid using bilinear interpolation for temperature and a conservative 
method (Jones 1999) for precipitation and radiation. 
 
The Scottish version of the IAP2 uses the 5x5 km UKCP09 climatology 1961-1990 as the baseline. It 
includes the same variables as the European IAP2 but also the wind speed for which the relative 
change is applied by multiplication. All changes were calculated on the RCM grid (~50 km) and 
remapped to the 5x5 km resolution using distance weighted averaging. 
 
An advantage of the Delta Change method is that it is relatively quick to add new scenario data; for 
instance a set of RCP2.6 data were added to the core set of scenario data to explore impacts under 
1.5°C scenarios. These RCP2.6 scenario data are only available for IAP2.  
 
Note that, even though the rIAM scenario data are similar to the IAP2 data in many respects, the rIAM 
data are not prepared using the Delta Change method. Instead the rIAM data were prepared as 
decadal averages of the daily data bias-adjusted using the quantile mapping described below. This was 
to assure consistency between the scenarios used within the project. 
 

2.1.2. Quantile mapping 
 
In IMPRESSIONS, daily RCM output for the core set of scenarios has been bias-adjusted using an 
empirical statistical quantile-quantile mapping. This method has been shown to perform well in 
comparison with other bias-adjustment methods and Delta Change methods (Räty et al., 2014). 
Time series of daily data from the RCMs are bias corrected against daily time series of observations 
from the WFDEI data set. The calibration period used is 1981-2010; as the historical simulations of the 
RCMs end with 2005, the period 2006-2010 are taken from the simulations following the RCP4.5 
scenario.  
 
The bias-adjustment method used is an empirical statistical quantile mapping (Themeβl et al, 2012, 
Wilcke et al., 2013). Each variable is bias corrected independently; studies have shown that the inter-
variable dependencies of the variables are retained by the quantile mapping (Wilcke et al., 2013). The 
bias-adjustment is done against gridded observation data, so the first step is to regrid the RCM output 
onto the grid of the observations. Mean, maximum and minimum temperatures are regridded using 
bilinear interpolation, and a lapse rate correction of 0.006K/km is applied to account for elevation 
differences. Precipitation, specific humidity and shortwave radiation are regridded using a 
conservative interpolation. The bias-adjustment is done grid cell by grid cell and thereby accounts for 
geographical variation.  
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The central feature in quantile mapping is the cumulative distribution function (ECDF), which is 
constructed by using data from a given calibration period. To produce a bias corrected data set, which 
has the same statistical properties as the observed data, the ECDF constructed from the RCM output 
is fitted to the ECDF of the observations. If a simulated RCM value of e.g. temperature is exceeded 
with a certain probability in a reference simulation, it will be translated to the corresponding 
observational value with the same exceedance probability in the observational data set (see Figure 
2.2). To take seasonal variation into account, the ECDFs are built for each day of the year (doy) using 
a 31-day sliding window, i.e. the ECDF of the 16th of January is made from all the values of January 1st 
to January 31st from the entire calibration period. As the calibration period is 30 years, 930 values are 
used in this case for constructing each ECDF. For this study we have chosen to build the ECDFs 
empirically (i.e. directly from the data without smoothing or fitting a function) by simply binning the 
modelled and observed variables, thereby no assumptions on the underlying distribution of the 
variables needs to be made. The bin size used depends on the variable; we have used a bin size of 0.1 
K for temperatures, and 0.1 mm/day for precipitation.  
 
Figure 2.2 shows a graphical example of the bias-adjustment process, using mean temperature, of the 
ECDFs of the observations and an RCM simulation in a given grid point. Once the ECDFs have been 
built for both the observed and the modelled parameter, the next step is to look at the probabilities 
of the individual RCM values. So looking at the given temperature, xrcm,raw, at time t, corresponding to 
a given day of year (doy), in grid point i the probability, pt,i, is determined for that temperature from 
the ECDF of the RCM output from the calibration period (cal):  
 

𝑝𝑡,𝑖 = 𝐸𝐶𝐷𝐹𝑑𝑜𝑦,𝑖
𝑟𝑐𝑚,𝑐𝑎𝑙(𝑥𝑡,𝑖

𝑟𝑐𝑚,𝑟𝑎𝑤) 

 
The next step is to calculate a correction term, Δxt,i, by taking the difference between the inverse ECDF 
of the observations and the raw RCM output from the calibration period for the given doy for that 
probability:  
 

∆𝑥𝑡,𝑖 = 𝐸𝐶𝐷𝐹𝑑𝑜𝑦,𝑖
𝑜𝑏𝑠,𝑐𝑎𝑙−1(𝑝𝑡,𝑖) − 𝐸𝐶𝐷𝐹𝑑𝑜𝑦,𝑖

𝑟𝑐𝑚,𝑐𝑎𝑙−1(𝑝𝑡,𝑖) 

 
The correction term is then added to the raw RCM temperature, xrcm,raw, to give the bias corrected 
temperature, xrcm,cor :  
 

𝑥𝑡,𝑖
𝑟𝑐𝑚,𝑐𝑜𝑟 = 𝑥𝑡,𝑖

𝑟𝑐𝑚,𝑟𝑎𝑤 + ∆𝑥𝑡,𝑖 
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Figure 2.2: Graphical interpretation of the bias-adjustment for mean temperature. For a specific 
value of the minimum temperature from the RCM of the same day of the year (doy), xrcm,raw, the 
probability, p, is determined from the ECDF of the RCM of the calibration period, ECDFrcm,cal. This 
probability is then translated to the corrected temperature, xrcm,cor, from the ECDF of the 
observations in the calibration period, ECDFobs,cal. 
 
 
The RCM values of the future time slices may be higher than the highest RCM values of the calibration 
period. In these cases the correction applied is the correction of the highest RCM values of the 
calibration period. Similarly if an RCM value of the future time-slices is lower than the lowest RCM 
value of the calibration period, the correction term of the lowest RCM value of the calibration period 
is applied. 
 
The bias-adjustment procedure described above is used for mean temperature and the main part of 
it is the same for all the variables, but several of the variables have some special features: 
 

 Radiation: The bias-adjustment procedure may create negative values of the radiation, which is 
physically impossible. Such values have been corrected to zero. For grid points where the incoming 
short-wave radiation at the surface is zero for a given day of the year throughout the calibration 
period of both the model and the observations, all future values are set to zero as well (this occurs 
for winter months at high northern latitudes). 

 Minimum and maximum temperature: Using the empirical statistical bias-adjustment method on 
minimum, maximum and mean temperature separately can lead to cases where minimum 
temperature may exceed mean or even maximum temperature, which is inconsistent. To avoid 
these inconsistencies we have calculated the daily temperature range (dtr) from maximum and 
minimum temperature for both the models and the observations, and bias-adjusted this, as well 
as the ratio between maximum and mean temperature. From the bias-adjusted daily temperature 
range, mean temperature and the ratio between maximum and mean temperature, we have 
derived bias-adjusted minimum and maximum temperatures.  

 Precipitation: For precipitation a frequency adaptation (Themeβl et al., 2012) is applied to prevent 
dry days being mapped into wet days in cases where the dry day frequency in the raw RCM output 
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is higher than the observed number of dry days. We use a threshold of 1 mm/day, and for wet 
days (≥ 1mm/day) a bin size of 0.1 mm/day is used, whereas we use a bin size of 0.01 mm/day for 
dry days (< 1mm/day). The essence of the frequency adaptation is to generate dry days in the first 
bin (i.e. 0 – 0.01 mm/day) of the RCM output by randomly sampling the observations of the same 
bin. By doing this the number of dry days is conserved. However, the most common situation is 
that the RCMs have too many days with light precipitation (drizzling-effect) and the quantile 
mapping efficiently corrects this known bias.  

 Humidity: For the WFDEI observational data, as well as for several of the GCMs and RCMs used in 
IMPRESSIONS only specific humidity (not relative humidity) is available. Therefore the bias-
adjustment is done on the specific humidity, and the relative humidity is estimated from the bias-
adjusted specific humidity, the pressure, and the bias-adjusted mean temperature using the Arden 
Buck equation. 

 
2.2. The WATCH WFDEI baseline data 
 
The WATCH WFDEI daily data (0.5°) is used as the baseline data in IMPRESSIONS. This data set was 
selected as it has global coverage and at the same time includes sub-daily data of a large number of 
climate variables needed for the hydrological modelling. Seasonal means (1981-2010) of air 
temperature (tas), precipitation (pr), shortwave downward radiation (rsds), 10 m wind speed 
(sfcWind), specific (huss) and relative (hurs) humidity are shown in Figure 2.3. Note, that relative 
humidity is not a WATCH WFDEI variable but is estimated from the specific humidity, pressure and 
temperature using the Arden Buck equation. 
 
The WATCH data is based on ERA-Interim reanalysis but monthly averages have been bias-adjusted 
against the CRU observational data. The temperature data were bias-adjusted against CRU mean 
monthly temperature and diurnal temperature range; precipitation was bias-adjusted against 
observations by first correcting the number of dry days and then scaling the precipitation in each time 
step to make the monthly means match the observations. As the last step, an under-catch correction 
has been applied (for snow and rain separately) to account for the anticipated underestimation of 
precipitation in the observed data (Adam and Lettenmaier, 2003). Two separate sets of precipitation 
data exist, one that is bias corrected against CRU TS3.1/TS3.101/TS3.21 and one that is bias corrected 
against GPCC v5/v6 (Schneider et al., 2011). We have followed the general recommendation and used 
the GPCC corrected data set in IMPRESSIONS as this data set is based on data from more stations. 
More information on the WATCH methodology can be found in Weedon et al (2011, 2014) and 
references therein. Please note that Weedon et al (2014) should be cited in publications using WATCH 
WFDEI data.  
 
As high-resolution (10’) data were requested by the European case study, the original 0.5° WATCH 
WFDEI data were remapped to the 10’ grid. Temperature and wind were remapped by bilinear 
interpolation and temperature data were height-corrected using a lapse rate correction of 0.006K/m. 
Precipitation, radiation and humidity data were remapped using a conservative method (Jones 1999).  
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Figure 2.3: Annual (ANN) and seasonal (DJF, MAM, JJA, SON) means of temperature (tas), 
precipitation (pr), radiation (rsds), wind (sfcWind), specific (huss) and relative humidity (hurs) from 
the Watch WFDEI data set from 1981-2010. Note that relative humidity has been derived from 
specific humidity using the Arden Buck Equation as described in the text. 
 
 
In CLIMSAVE, the CRU 1961-1990 climatology (10’) was used as the baseline. As the WATCH WFDEI 
was not well-known to the impact modellers, we did a small comparison to explore the differences 
between the two baseline periods and more generally between the CRU and WATCH data sets. The 
comparison was performed for temperature and precipitation and was documented in an 
IMPRESSIONS technical note3. Figures 2.4 and 2.5 show the differences between the climatology of 

                                                           
3 http://ensemblesrt3.dmi.dk/data/IMPRESSIONS/WFDEI/IMPRESSIONS_baseline_comparison.pdf 
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mean temperature and precipitation for WATCH WFDEI 1981-2010 vs. CRU 1961-1990 after 
downscaling to the CRU 10’ grid.  
 
Overall, we found that the WATCH and CRU monthly mean temperature data compare very well at 
the 0.5° resolution as expected since the WATCH data was bias-corrected against CRU monthly mean 
temperature. The temperature difference of about 1°C warming between WATCH WFDEI 1981-2010 
and CRU 1961-1990 reflects a general warming between the two time periods. Differences between 
CRU and WATCH are however found in minimum and maximum temperature, because the diurnal 
temperature range was used for the bias correction of WATCH WFDEI and the relationship with mean 
temperature is defined differently in the two data sets. A comparison between the high-resolution 
data (CRU vs. WATCH) revealed some inconsistencies in the CRU data which are described in more 
detail in the IMPRESSIONS technical note. 
 
For precipitation, the differences between the two climatologies are larger. The differences reflect 
that the WATCH WFDEI data were bias-adjusted against the GPCC precipitation data (and not CRU), 
and furthermore, the applied under-catch correction increases the amount of precipitation especially 
in regions where snowfall is the dominant form of precipitation. 
 

 
Figure 2.4: Monthly mean difference in mean temperature (oC) for WATCH WFDEI 1981-2010 vs 
CRU 1961-1990 (10’). 
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Figure 2.5: Monthly mean difference in precipitation (mm/month) for WATCH WFDEI 1981-2010 
vs. CRU 1961-1990 (10’). 
 
 

3. Climate change projections 
 
In this section the bias-adjusted climate change projections are considered. First we illustrate the 
changes in mean climate change projected by the core set of RCMs. Similar results are presented next 
for the bias-adjusted GCMs and, finally, we compare the climate change signal projected by GCM vs 
RCM, and bias-adjusted data vs model outputs.  
 

3.1. Bias-adjusted RCM data 
 
In this section we describe the climate change projections based on the bias-adjusted RCMs. First we 
consider one single model, and consider the 30-year mean seasonal climate change signal simulated 
for each variable for each of the periods 2011-2040, 2041-2070 and 2071-2100. Next we compare the 
spread in the climate change signal for the last period (2071-2100) across all seven RCMs. 
 
Figure 3.1 illustrates the CORDEX domain in which the RCM data are available and the sub-domain for 
which the RCM data have been bias-adjusted. The bias-adjustment was performed at the resolution 
of the WATCH reference data (0.5°) which is quite similar to the resolution of the RCM data. As higher 
resolution data were requested for the European case study, the data were interpolated to the 10’ 
CRU grid after bias-adjustment. As for the WATCH data, temperature and wind speed data were 
bilinearly interpolated and a lapse rate correction was applied for temperature. Precipitation, 
radiation and humidity were remapped using a conservative method. Decadal monthly averages were 
extracted for a slightly smaller European domain used by the regional integrated assessment model 
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(rIAM). It should be stressed that the high resolution data are based on interpolations and do not 
include additional information. 

 

Figure 3.1: Map showing the CORDEX domain for which the RCM data is available, and the blue and 
pink boxes show the areas in which bias-adjustment has been done; the pink box illustrates the 0.5° 
grid and the blue box the 10’ grid.  
 
 
The bias-adjustment significantly reduces bias on each variable. This is illustrated in Figure 3.2 which 
shows the biases of the bias-adjusted values of GFDL-RCA4 and may be directly compared to Figure 
2.1, which shows the bias prior to bias-adjustment. Note that the scales of the individual axes are 
different in this figure; otherwise all the maps would be completely represented in white.  
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Figure 3.2: Bias of the bias-adjusted annual (ANN) and seasonal (DJF, MAM, JJA, SON) means of 
GFDL-RCA 1981-2010 of temperature (tas), precipitation (pr), short wave radiation (rsds), surface 
wind (sfcWind), specific humidity (huss) and relative humidity (hurs). Note the different scales on 
the axes compared to Figure 2.1. 
 
 
Also note, that for simplicity we have used the WATCH WFDEI data as the baseline data for the rIAM 
independent of the GCM/RCM used for the scenario period. As the rIAM is using the bias-adjusted 
climate data for the future time slices, it would be more consistent to use the bias-adjusted baseline 
data for each of the GCM-RCMs. However, as each of them through the bias-adjustment is given the 
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same statistical properties as the observations of the baseline period, differences will be very small 
(cf. the bias shown in Figure 3.2).  
 
From the bias-adjusted RCM data, projected changes in all the climate variables can be calculated. 
Figures 3.3 to 3.10 show climate changes in annual and seasonal means for 2011-2040, 2041-2070 and 
2071-2100 compared to 1981-2010 for CanESM-CanRCM (RCP8.5) for mean temperature (Figure 3.3), 
precipitation (Figure 3.4), short-wave radiation (Figure 3.5), wind speed (Figure 3.6), specific humidity 
(Figure 3.7), relative humidity (Figure 3.8), maximum temperature (Figure 3.9) and minimum 
temperature (3.10).  
 
For the CanESM-CanRCM model, the temperature shows a rather uniform pattern of change that 
increases towards the end of the century. In winter, the largest change is found in northern Europe; 
in summer the largest temperature increases are found in southern Europe (Figure 3.3). For 
precipitation, we also see an increased climate change towards the end of the century; the general 
pattern is increased precipitation to the north and a decrease to the south (Figure 3.4). The changes 
in incoming short-wave radiation are much more diverse. The model shows a large increase in central 
Europe during summer and also a general increase in autumn, except for northern Scandinavia (Figure 
3.5). Changes in wind are not very uniform and the most pronounced changes seem to be a decrease 
in mean wind speed during summer and an increase during winter especially in Scandinavia and 
Central Europe (Figure 3.6). This pattern also intensifies towards the end of the century. Figure 3.7 
shows that the specific humidity increases with a pattern very similar to the pattern of temperature 
change. The relative humidity also generally increases but in regions with high increase in temperature 
combined with a decrease in precipitation, a decrease in relative humidity is projected during summer 
and autumn (Figure 3.8). 
 

 
Figure 3.3: Projected annual (ANN) and seasonal (DJF, MAM, JJA, SON) changes in temperature (oC) 
for three time periods from CanESM-CanRCM RCP8.5 with respect to 1981-2010. 
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Figure 3.4: Projected annual (ANN) and seasonal (DJF, MAM, JJA, SON) changes in precipitation (%) 
for three time periods from CanESM-CanRCM RCP85 with respect to 1981-2010. 

 

Figure 3.5: Projected annual (ANN) and seasonal (DJF, MAM, JJA, SON) changes in short-wave 
radiation (Wm2) for three time periods from CanESM-CanRCM RCP85 with respect to 1981-2010. 
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Figure 3.6: Projected annual (ANN) and seasonal (DJF, MAM, JJA, SON) changes in surface wind 
speed (at 10 m, m/s) for three time periods from CanESM-CanRCM RCP85 with respect to 1981-
2010. 

 

Figure 3.7: Projected annual (ANN) and seasonal (DJF, MAM, JJA, SON) changes in specific humidity 
(kg/kg) for three time periods from CanESM-CanRCM RCP85 with respect to 1981-2010. 



D2.3: Climate scenarios  21 | Page 
__________________________________________________________________________________ 
 

 
 

 

Figure 3.8: Projected annual (ANN) and seasonal (DJF, MAM, JJA, SON) changes in relative humidity 
(%-point) for three time periods from CanESM-CanRCM RCP85 with respect to 1981-2010. 

 

Figure 3.9: Projected annual (ANN) and seasonal (DJF, MAM, JJA, SON) changes in maximum 
temperature (oC) for three time periods from CanESM-CanRCM RCP85 with respect to 1981-2010. 
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Figure 3.10: Projected annual (ANN) and seasonal (DJF, MAM, JJA, SON) changes in minimum 
temperature (oC) for three time periods from CanESM-CanRCM RCP85 with respect to 1981-2010. 
 
 
Figures 3.11-3.16 show the climate change signal for the last time period (2071-2100 vs. 1981-2010) 
for each variable and for each of the seven GCM-RCMs in the core set. The temperature signal clearly 
illustrates the large spread between high-end, intermediate and low-end scenarios (Table 1, Figures 
3.11 and 3.24). For precipitation, the models in general agree that precipitation will increase in 
northern Europe whereas southern Europe will have drier conditions (Figure 3.12). However, the 
models vary in strength of the signal and also in the seasonal and geographical variation. All selected 
models agree on an increase in specific humidity (Figure 3.15) and the increase correlates with the 
models projected temperature increase. The spread in the projected change in relative humidity 
(Figure 3.16) seems to be related to the spread in changes in temperature as well as precipitation. For 
wind speed the models do not agree on either the sign of the change or its seasonal variation (Figure 
3.14). 
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Figure 3.11: The climate change signal of temperature (2071-2100 minus 1981-2010) for all 7 models 
used in IMPRESSIONS illustrating model spread. 
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Figure 3.12: The climate change signal of precipitation (2071-2100 relative to 1981-2010) for all 7 
models used in IMPRESSIONS illustrating model spread.  
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Figure 3.13: The climate change signal of short-wave radiation (2071-2100 minus 1981-2010) for all 
7 models used in IMPRESSIONS illustrating model spread. 
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Figure 3.14: The climate change signal of surface 10m wind speed (2071-2100 minus 1981-2010) for 
all 7 models used in IMPRESSIONS illustrating model spread. 
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Figure 3.15: The climate change signal of specific humidity (2071-2100 minus 1981-2010) for all 7 
models used in IMPRESSIONS illustrating model spread. 
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Figure 3.16: The climate change signal of relative humidity (2071-2100 minus 1981-2010) for all 7 
models used in IMPRESSIONS illustrating model spread. 
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3.2. Bias-adjusted GCM data 
 
Traditionally, the main focus of GCMs is to gain knowledge about large-scale interactions and 
feedbacks in the climate system. As GCMs run at relatively coarse temporal and spatial resolution, the 
output includes less detail in time as well as space, and most often multi-year monthly averages are 
used for the analysis of a GCM simulation. This means that even though daily GCM data are available, 
these typically compare less well with observations than the daily RCM data. That said, cases arise 
when there is a wish for using daily data from GCMs, most often because no or insufficient RCM data 
are available for the region of interest. In IMPRESSIONS, daily GCM data are used for the river 
catchment of Northern Dvina, Russia, as this catchment is at the edge of the European CORDEX 
domain. This means that there is a need for bias adjusting daily data from GCMs. In IMPRESSIONS we 
have chosen to use the same bias-adjustment method for GCM data as for RCM data for consistency. 
To our knowledge quantile mapping is not often used on GCM data, probably due to the fact the 
distribution of the daily data of the modelled variable need to be relatively similar to the observed 
distribution for quantile mapping to be successful, at least from a perspective of physical consistency. 
We therefore expect the bias-adjustment approach to work less effectively when daily GCM data are 
adjusted as compared to when daily RCM data are used.  
 
In ISI-MIP4 a quite different approach to bias-adjust daily GCM data was used. Here it was decided that 
the bias-adjustment technique had to conserve the climate change signal, and an ad hoc bias-
adjustment procedure was built around this requirement (Hempel et al 2013). The quantile mapping 
procedure does not by construction conserve the climate change signal, although ideally it should not 
change it too much. In this section, we first present the bias-adjusted GCM data and then compare 
the climate change signal of GCM and RCM data before and after bias-adjustment.  
 
In Figures 3.17 and 3.18, the 30-year seasonal mean biases of temperature, precipitation, short-wave 
radiation, and specific and relative humidity are shown before and after the bias-adjustment has been 
applied. Note that relative humidity was only available for a few GCMs and is instead derived from 
specific humidity using the Arden Buck equation. Also note, that we did not bias-adjust surface wind 
speed for the GCM data.  
 
The bias of the direct GCM output is large in all variables (Figure 3.17), but the bias is significantly 
reduced after the adjustment (Figure 3.18). The bias is however still larger than the bias of the adjusted 
RCM data.  
  

                                                           
4 ISI-MIP, the first Inter-Sectoral Impact Model Intercomparison Project (www.isi-mip.org) 
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Figure 3.17: Bias of GFDL-ESM2M before bias-adjustment with regard to WFDEI 1981-2010.  
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Figure 3.18: Bias of GFDL-ESM2M after bias-adjustment with regard to WFDEI 1981-2010. 
 
 
Figures 3.19-3.23 show the projected changes in temperature, precipitation, short-wave radiation, 
and specific and relative humidity for CanESM (RCP8.5) for all three time slices. The climate change 
for the European region may be compared to the climate change projected by the RCMs. Specifically, 
we note that the change in short-wave radiation projected by CanESM has a seasonal pattern similar 
to that projected by CanESM-RCA4 with a large increase in Europe during summer. 
 
The spread in projected temperature and precipitation changes for the selected GCMs (2071-2100 vs 
1981-2010) is illustrated in Figures 3.24-3.25 and can be compared with the spread projected by the 
RCMs (Figures 3.11-3.16).  
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Figure 3.19: Projected changes in temperature for CanESM – RCP8.5 with respect to 1981-2010 (bias-
adjusted data). 

 

Figure 3.20: Projected changes in precipitation for CanESM - RCP8.5 with respect to 1981-2010. 
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Figure 3.21: Projected change of short-wave radiation for CanESM - RCP8.5 with respect to 1981-
2010. 

 

Figure 3.22: Projected changes in specific humidity for CanESM - RCP8.5 with respect to 1981-2010. 
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Figure 3.23: Projected change in relative humidity for CanESM - RCP8.5 with respect to 1981-2010. 
  



D2.3: Climate scenarios  35 | Page 
__________________________________________________________________________________ 
 

 
 

 

 

 

 

 

 

 

Figure 3.24: Projected temperature change for 2071-2100 for all GCM-RCM combinations.  
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Figure 3.25: Projected precipitation change for 2071-2100 compared to 1981-2010 for all GCM-RCM 
combinations; illustrates model spread. 
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3.3. Comparison of RCM and GCM climate change 
 
We now have a set of GCMs each dynamically downscaled with an RCM, and both the GCM and the 
RCM have been bias-adjusted using the same method. The initial selection of the GCMs to be used in 
IMPRESSIONS was based on the change in global mean temperature (1981-2010 vs. 2071-2100) of the 
GCM (see Deliverable D2.1). As we consider both the GCM and the downscaling RCM in this study, we 
consider here to what extent the dynamical downscaling affects the climate change signal in 
temperature and precipitation. Figure 3.26 illustrates the climate change signal for each GCM (large 
symbols with black outline) and RCM (smaller filled symbols); the RCM is connected to the 
corresponding GCM with a line. We see that the temperature change is shifted by more than 0.5oC in 
some places due to the downscaling. The precipitation pattern is generally more strongly influenced 
by the RCM than the temperature pattern and we see larger shifts in the precipitation signal; for 
several GCM-RCMs the sign of the precipitation change is also shifted by the RCM (Figure 3.26).  
 

 

Figure 3.26: Projected climate changes of the GCMs and their downscaled RCMs from 1981-2010 to 
2071-2100. GCM represented by large symbols with black outline and RCM by smaller filled symbols. 
 
 
Figure 3.27 also compares GCM and RCM climate change signals, but here for the three local case 
study regions, Hungary, the British Isles (Scotland) and the Iberian Peninsula. For these, we added 
both the change deduced from the direct GCM-RCM output and based on the bias-adjusted GCM-RCM 
data; full circles indicate direct model output, open circles indicate bias-adjusted output (Figure 3.27). 
 
It is clearly seen that the climate change signal is affected by the bias-adjustment, and for most GCM-
RCM combinations, the climate change signal is affected more by the dynamical downscaling than by 
the bias-adjustment, but there are large local differences (Figure 3.27).  
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Figure 3.27: Projected climate changes of the GCMs and their downscaled RCMs from 1981-2010 to 
2071-2100 for the three IMPRESSIONS regional case study areas. Filled circles indicate direct model 
output, open circles indicate bias-adjusted output. 
 
 
To further look into these differences Figures 3.28-3.31 compare maps of climate change signals 
(1981-2010 vs 2071-2100) in summer temperature and precipitation. The upper maps in each figure 
are from the GCM, direct model output vs bias-adjusted and the lower maps are from the RCM. Maps 
to the left are based on original model output, and maps to the right are based on the bias-adjusted 
data. It should be stressed that the most extreme cases have been selected to illustrate that the 
climate change signal is significantly changed for some models/variables, while well preserved for 
others. 
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Figure 3.28: Climate change signal in summer temperature (JJA) according to HadGEM-RCA from 
1981-2010 to 2071-2100. 

 

Figure 3.29: Climate change signal in summer temperature (JJA) according to CanESM-CanRCM from 
1981-2010 to 2071-2100. 
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Figure 3.30: Climate change signal in summer precipitation (JJA) according to IPSL-WRF  
 

 
Figure 3.31: Climate change signal in summer precipitation (JJA) according to GDFL and GFDL-RCA 
from 1981-2010 to 2071-2100 before and after bias-adjustment.  
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For HadGEM (Figure 3.28), the climate change signal in summer temperature greatly increased 
following bias-adjustment. This could indicate large differences in the daily temperature distributions 
of HadGEM and WATCH WFDEI. The downscaling by the RCM does not change the European mean 
temperature change significantly but the region of largest warming is shifted from Central Europe to 
the Iberian Peninsula. For CanESM (Figure 3.29), the bias-adjustment has the opposite effect and 
actually decreases the climate change signal in summer temperature. Figures 3.30-3.31 show 
examples of GCM-RCMs for which the climate change signal in European summer precipitation is only 
slightly affected by bias-adjustment as well as dynamical downscaling.   
 
 

4. Climate indices for Europe 
 
A number of climate indices were calculated from the bias-adjusted daily RCM data. The most relevant 
indices for each local case study were selected by the impact modelers, and all indices were calculated 
for the whole European domain using the 0.5° resolution data. Below we have listed the indexes that 
are available from the IMPRESSIONS website together with the bias-adjusted data. A more detailed 
description of each index can be found at http://etccdi.pacificclimate.org/list_27_indices.shtml. A few 
selected indexes are presented below (Figures 4.1-4.4), together with several visualized products that 
were produced on request from the individual case studies (Figures 4.5-4.9). 
 
Climate indices based on temperature:  
FD, number of frost days (days/year), 
SU25, number of summer days with maximum temperature above 25°C (days/year), 
SU45, number of summer days with maximum temperature above 45°C (days/year), 
TR20, number of tropical nights with minimum temperature above 20°C (days/year), 
TN10p, cold nights: count of days where Tmin < 10th percentile (%), 
TX10p, cold day-times: count of days where Tmax < 10th percentile (%), 
TN90p, warm nights: number of days where Tmin > 90th percentile (%), 
TX90p, warm day-times: count of days where Tmax > 90th percentile (%), 
WSDI, warm spell duration index: Annual count of days with at least 6 consecutive days where Tmax 
> 90th percentile (days/year). The number of warm spell periods per year is also available, 
CSDI, cold spell duration index: Annual count of days with at least 6 consecutive days where Tmin < 
10th percentile (days/year). The number of cold spell periods per year is also available,  
GSL, growing season length: Annual count of days between first span of at least 6 days with daily mean 
temperature TG>5°C and first span of 6 days with TG<5°C (days). The start day of the growing season 
is also output. 
 
Climate indices based on precipitation: 
PRCPTOT, Annual values of total precipitation in wet days with precipitation ≥ 1 mm (mm/year), 
SDII, simple daily intensity index: The ratio of total annual precipitation on wet days to the number of 
wet days (≥1mm) (mm/day),  
R10mm, heavy precipitation days: Annual count of days with precipitation ≥ 10 mm (days/year), 
R20mm, very heavy precipitation days: Annual count of days with precipitation ≥ 20 mm (days/year), 
R95PTOT, percentage of precipitation due to very wet days (>95th percentile of reference period) (%), 
CDD, consecutive dry days: Maximum number of consecutive days with precipitation < 1mm 
(days/year). Annual count of the number of periods with at least 5 consecutive dry days is also 
available,   
CWD, consecutive wet days: Maximum number of consecutive days with precipitation ≥ 1mm 
(days/year). Annual count of the number of periods with at least 5 consecutive wet days is also 
available,   
MONsum: Monthly values of total precipitation (mm/month), 

http://etccdi.pacificclimate.org/list_27_indices.shtml
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SEASsum: Seasonal values of total precipitation (mm/season). 
 
The number of Frost Days (FD; Figure 4.1), warm day-times (Tx90p; Figure 4.2) and Growing Season 
Length (GSL, Figure 4.3) are shown as examples of threshold and percentile based temperature 
indices. GCM-RCMs projecting high-end climate change also project the largest decrease in FD and the 
largest increase in Tx90p and GSL. Heavy precipitation days (R10mm; Figure 4.4) is an example of a 
threshold dependent precipitation index.  
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Figure 4.1: The number of frost days (FD) for all 7 GCM-RCM combinations. 
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Figure 4.2: Warm day-times (TX90p) for all 7 GCM-RCM combinations. 
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Figure 4.3: Growing season length (GSL) for all 7 GCM-RCM combinations (scale is from 50 to 365). 
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Figure 4.4: Heavy precipitation days (R10 mm) index for all 7 GCM-RCM combinations. 
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4.1. Customized data for the local case studies 
 
A few more specific climate indices were requested by the Iberian and Hungarian case studies and 
these are presented below. We also show an example of one of the climate analogues that were 
prepared for the Scottish case study. 
 

4.1.1. Standardized Precipitation Index for the Iberian case study 
 
The Standardized Precipitation Index (SPI, McKee et al. 1993) is a normalized index representing the 
probability of occurrence of an observed rainfall amount when compared with the rainfall climatology 
at a certain geographical location over a long-term reference period. Here SPI-12 is used, as the 12-
month period represents an annual evaluation of the precipitation patterns affecting large water 
reservoirs, such as dams and aquifers. The calibration period is naturally taken as the same as the 
baseline period (1981-2010). The procedure to calculate the SPI can be found here: 
http://ccc.atmos.colostate.edu/pub/spi.pdf.  
 
Figure 4.5 shows the number of droughts according to CanESM-CanRCM (RCP8.5) for the baseline 
period as well as three future 30-yr time slices; it is the number of events per 30 years. Here a drought 
is defined as a coherent period where the monthly value of SPI is at or below -2. One event can be one 
month or several consecutive months where SPI-12 is equal to or less than -2. According to this climate 
model, the number of drought events increases over the entire Iberian peninsula throughout the 21st 
century (Figure 4.5).  
 

 

Figure 4.5: Number of drought events over the Iberian Peninsula in each time slice based on 
CanESM-CanRCM4 (RCP8.5). 
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Figure 4.6: Average duration of droughts over the Iberian Peninsula based on CanESM2-CanRCM4 
(RCP8.5).  
 
 
Figure 4.6 shows the average duration of the drought events in each of the 30-yr time slices, given by 
the number of drought events divided by the number of months with SPI less or equal to -2. Here it is 
seen that for this model, the number of events do not change systematically over the Iberian 
Peninsula, but that there are regional differences (Figure 4.6). Comparing some of the models used in 
IMPRESSIONS, quite different climate change signals of number of events and drought duration were 
found among the core set of climate models (not shown). All the models, however, agreed that the 
number of months with drought (SPI <= -2) increased throughout the 21st century.  
 

4.1.2. Heat index for Hungary 
 
For Hungary, two heat-related indices were calculated (the Heat Index and the Heat Warning Level 
system) in addition to the standard temperature indices mentioned earlier. 
 
The Heat Index (HI) is what the temperature feels like to the human body when relative humidity is 
combined with the air temperature. It is an index used more in the US than in Europe, and therefore 
values of the Heat Index are often cited in degrees Fahrenheit. This is also the case here but it would 
be quite straightforward to convert values of the Heat Index into degrees Celsius. The Heat Index 
depends on both temperature and humidity, as both influence the human body’s heat stress. Humidity 
influences the ability of the body to sweat and thereby get rid of excess heat. The Heat Index is built 
empirically and there are a multitude of different ways to calculate it. The algorithm by the U.S. 
National Weather Service (NWS) has been used here, as this has proven to perform well compared to 
other algorithms (Anderson et al., 2013). The Heat Index takes the temperature and the humidity and 
combines it into an apparent temperature, which relates to the heat stress felt by the body of an 
average human and the consequences of this. Heat indices between 80-90°F (level: Caution) can cause 
fatigue under prolonged exposure and/or physical activity, for heat indices between 90°F and 103°F 
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(level: Extreme Caution) heat stroke, heat cramps, or heat exhaustion is possible with prolonged 
exposure and/or physical activity, for heat indices between 103°F and 124°F (level: Danger) heat 
cramps or heat exhaustion is likely, and heat stroke possible with prolonged exposure and/or physical 
activity, and for heat indices above 125°F (level: Extreme Danger) heat stroke becomes highly likely.  
 
Figure 4.7 shows the daily value of the Heat Index for two different 5 year periods, 1981-1985 and 
2096-2100 according to CanESM-CanRCM-RCP85 (high-end model). It is clear from the figure that with 
the projected warming of CanESM-CanRCM that cases of Caution and Extreme Caution, which basically 
do not happen in the 1981-1985 period, become events that occur every summer in the period 2096-
2100. More info on the Heat Index can be found here: http://www.srh.noaa.gov/ama/?n=heatindex.  
 

 

Figure 4.7: Heat index and associated warning levels for 1981-1985 (upper) and 2096-2100 (lower) 
according to CanESM2-CanRCM4 RCP8.5. 
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Besides the Heat Index, the heat warning level system used in Hungary was also calculated. The 
warning level system is a three-level warning system based on temperature thresholds as heat warning: 

 
 1st level of warning (for internal use): the daily mean temperature is forecasted ≥25ºC for 1 day. 

 2nd level of warning: alert: when the Meteorological Service forecast daily mean temperature 

≥25ºC for at least 3 consecutive days.   

 3rd level of warning: alarm: when the Meteorological Service forecast daily mean temperature 

≥27ºC for at least 3 consecutive days. 

 
This definition follows the National Public Health and Medical Office Service (ANTSZ)5, often a second 
criterion is included in the level 2 warning, namely that the daily mean temperature forecasted ≥27ºC 

for 1 day (L: Pinter, personal communication, 2016), this was however not included here.  

 

The different levels of warning were calculated from the daily temperature data of the regional climate 

models for all grid points in Hungary. Figure 4.8 shows the climate changes in the number of days with 

the different levels of warning taken as the mean over all the grid points in Hungary; full lines are for 

RCP8.5 simulations while RCP4.5 simulations are shown with dashed lines. For the level 1 warnings all 

scenarios follow each other relatively closely, with only slightly higher values for the RCP8.5 simulations 

than for the RCP4.5 simulations. For level 3 warnings however, the high-end scenarios (CanESM-

CanRCM-RCP85, IPSL-WRF-RCP85 and HadGEM-RCM-RCP85) show a strong increase, whereas the low-

end models (GDFL-RCA-RCP45 and MPI-ESM-CCLM-RCP45) shows a very small increase (Figure 4.8).  

                                                           
5 https://www.antsz.hu/felso_menu/temaink/veszelyhelyzetek/hosegriasztas/fokozat.html 
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Figure 4.8: Changes in level 1, 2 and 3 heat warnings for Hungary according to the seven RCM 
simulations (3 RCP4.5 and 4 RCP8.5) used in IMPRESSIONS. 
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4.1.3. Climate analogues for Scotland 
 
For Scotland, a set of climate analogues were requested to use as part of the case study work on 
tourism. Figure 4.9 shows an example of the climate analogue plots prepared for Scotland. The red 
area denotes the region which today (1981-2010) has the same annual mean temperature as Quiraing 
in northwest Scotland is projected to have in 2071-2100. The diagram was screened for elevation sites 
significantly different from the elevation of the Scottish location, so that the elevation difference is 
less than 300 metres at all selected (red) locations. This is because higher (or lower) elevations will 
tend to have quite different climate in terms of cloud and wind exposure, which will make the idea of 
having an analogue climate represented by one variable alone questionable. The climate analogues 
prepared in IMPRESSIONS were all based on the high-resolution (11km) HIRHAM simulation 
downscaling EC-Earth under the RCP8.5 scenario (medium climate sensitivity). 
 

 

Figure 4.9: Present-day temperature analogues for Quiraing (denoted by the blue cross) in north-
west Scotland 2071-2100.  
 
 

5. Introduction to probabilistic climate scenarios 
 
The scenarios described in this Deliverable are based on a sub-set of selected climate simulations and 
may be used to address the spread in projected climate change. However, these data are not sufficient 
for evaluating, for example, the risk of exceeding critical impacts, and to this end probabilistic 
scenarios are developed for later work in IMPRESSIONS. 
 
The most straightforward method for determining probabilistic climate change impacts would be to 
use the full ensemble of climate model simulations as input for the impact models and then use the 
resulting ensemble of impact model results to calculate the risk of a specific impact. However, this 
approach is considered too demanding and therefore not often used in practice. 
 
Another approach would be to construct an impact response surface based on a sensitivity analysis of 
the impact model with respect to changes in key climatic variables as suggested in Fronzek et al. (2010) 
and discussed in Deliverable D3.1. The risk of the impact may then be assessed by superimposing 
climate change projections on to the response surface. Räisänen et al. (2006) suggested increasing the 
sample size of climate change projections by using a simple resampling method. The main assumption 
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of the method is that the probability distribution of regional climate change can be related to the 
simulated multi-model global mean warming. As the resampled pairs correspond to a specific model 
output, the correlation between temperature and precipitation is restored in the resampling 
procedure and joint distributions of projected changes in temperature and precipitation are obtained. 
Using this resampling method enhances the total number of realised future climate states by the 
models to the degree that a density distribution function of plausible future states can be constructed, 
whereby a probabilistic estimate of the likely future changes can be given. The probabilistic scenarios 
used in IMPRESSIONS will be developed along these lines over the next six months.  
 
A number of issues related to the selection procedure of the GCM-RCM pairs adopted in IMPRESSIONS 
still need further analyses in order to assess the robustness of this approach. For example, knowing to 
which extent the selected GCM-RCM combination actually is a fair representation of model spread 
still needs to be assessed. Other projects and researchers have tried to address this and their 
conclusions based on somewhat different methodologies needs a review in an IMPRESSIONS context 
(e.g. Mearns et al. 2012; Dubrovsky et al. 2015; McSweeney & Jones, 2016).  
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